

300mA, Low Noise High PSRR LDO Regulator

Description

The FP6187 is a low dropout, low noise, high PSRR, low quiescent current positive linear regulator. The FP6187 can supply 300mA output current with low dropout voltage at about 150mV that optimized for battery-powered systems or portable wireless devices such as mobile phones. The shutdown function can provide remote control for the external signal to decide the on/off state of FP6187 that consumes less than 0.1µA during shutdown mode.

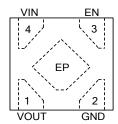
The FP6187 regulator is able to operate with output capacitors as small as $1\mu F$ for stability. The FP6187 fault protection includes the current limit protection and current foldback protection.

The FP6187 offers high precision output voltage of $\pm 1\%$. The FP6187 is available in UTDFN-4L (1mm×1mm) and SOT-23-5 packages which features small size.

Features

- Low V_{IN} and Wide V_{IN} Range: 1.5V to 5.5V
- Output Current 300mA*
- ±1% Output Voltage Accuracy
- Output Noise 65µVrms from 10Hz to 100kHz
- Vout Fixed 1V to 3.3V
- Low Dropout Voltage of 150mV at 3V/300mA
- Ripple Rejection 75dB at 1kHz
- Low Quiescent Current at 45µA
- Needs Only 1µF Capacitor for Stability
- Current Limit Protection
- Current Foldback Protection
- Output Discharge Function
- UTDFN-4L (1mm×1mm) and SOT-23-5 Packages
- RoHS Compliant

Applications


- PDAs, Mobile phones, GPS, Smartphones
- Wireless Handsets, Wireless LAN, Bluetooth®, Zigbee®
- Portable Medical Equipment
- Other Battery Powered Applications

^{*1} Attention should be paid to the power dissipation of the package when the output current is large.

Pin Assignment

X6 Package (UTDFN-4L, 1.0x1.0x0.4mm) (Top view)

S5 Package (SOT-23-5)

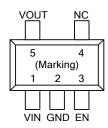
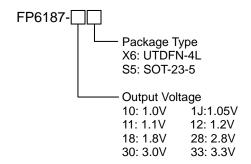



Figure 1. Pin Assignment of FP6187

Ordering Information

Marking Information

Part Number	Product Code
FP6187-10X6	YJ
FP6187-1JX6	YK
FP6187-11X6	YL
FP6187-12X6	YM
FP6187-18X6	YP
FP6187-28X6	YT
FP6187-30X6	YU
FP6187-33X6	YV

Note: Please consult Fitipower sales office or authorized distributors for availability of special output voltages.

Typical Application Circuit

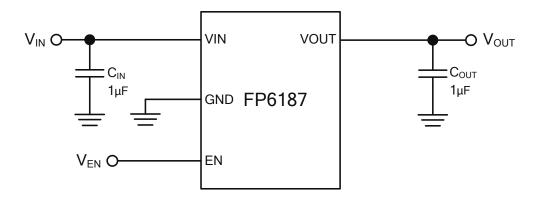


Figure 2. Typical Application Circuit of FP6187

Note 1: To prevent oscillation, it is recommended to use minimum $1\mu F$ X7R or X5R dielectric capacitors if ceramics are used as input/output capacitors.

Functional Pin Description

Pin Name	Pin No. (SOT-23-5)	Pin No. (UTDFN-4L)	Pin Function			
VIN	1	4	Power is supplied to this device from this pin which is required an input filter capacitor. In general, the input capacitor in the range of $1\mu F$ to $10\mu F$ is sufficient.			
GND	2	2	mmon ground pin.			
EN	3	3	Pull this pin high to enable IC, pull this pin low to shutdown IC. Floating this pin will be shutdown due to the built-in pull-low resistor.			
NC	4	-	NC.			
VOUT	5	1	The FP6187 is stable with an output capacitor 1µF or greater. The larger output capacitor will be required for application with larger load transients. The large output capacitor could reduce output noise, improve stability and PSRR.			

Block Diagram

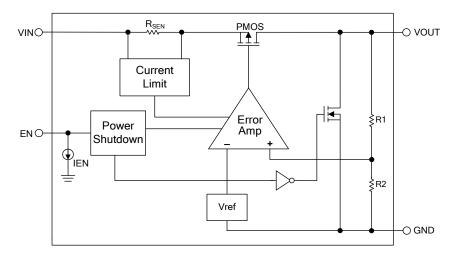


Figure 3. Block Diagram of FP6187

Absolute Maximum Ratings (Note 2)

Supply Voltage V _{IN}	-0.3V to +6.5V
EN Voltage V _{EN}	-0.3V to V_{IN} +0.3V
 Power Dissipation @ T_A=25°C & T_J=125°C (P_D) 	
UTDFN-4L(1mmx1mm)	0.5W
SOT-23-5	0.4W
 Package Thermal Resistance (θ_{JA}) (Note 3) 	
UTDFN-4L(1mmx1mm)	195°C/W
SOT-23-5	250°C/W
$ullet$ Package Thermal Resistance (eta_{JC})	
UTDFN-4L(1mmx1mm)	65°C/W
SOT-23-5	130°C/W
• Lead Temperature (Soldering, 10sec.)	+260°C
• Junction Temperature (T _J)	-40°C to +150°C
Storage Temperature (T _{STG})	-65°C to +150°C
Note 2: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent damage to the Note 3: θ_{JA} is measured at 25°C ambient with the component mounted on a high effective thermal conductivity	device. 4-layer board of JEDEC-51-7.

Note 2: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Note 3: θ_{JA} is measured at 25°C ambient with the component mounted on a high effective thermal conductivity 4-layer board of JEDEC-51-7 The thermal resistance greatly varies with layout, copper thickness, number of layers and PCB size.

Recommended Operating Conditions

VIN Supply Voltage	+1.5V to +5.5V
• Output Current (I _{OUT})	300mA
Operating Temperature Range (T _{OPR})	-40°C to +85°C
Operating Junction Temperature Range (T _J)	-40°C to +125°C

Electrical Characteristics

 $(V_{IN}=V_{OUT}+1V, EN pin connected to V_{IN}, C_{IN}=1\mu F, C_{OUT}=1\mu F, T_A=25^{\circ}C, unless otherwise specified.)$

Parameter	Symbol	Conditions		Min	Тур	Max	Unit
Input Voltage Range	Vin			1.5		5.5	V
Quiescent Current	ΙQ	I _{OUT} =0A			45		μΑ
Standby Current	I _{STBY}	EN Pin Conne	ected to GND		0.1	1	μΑ
Output Voltage Accuracy	ΔV _{OUT}	I _{OUT} =1mA		-1		+1	%
			V _{OUT} =1.0V		650	850	
			V _{OUT} =1.2V		440	570	mV
Note 4)	.,		V _{OUT} =1.8V		230	300	
Dropout Voltage (Note 4)	V_{DROP}	I _{OUT} =300mA	V _{OUT} =2.8V		160	210	
			V _{OUT} =3.0V		150	200	
			V _{OUT} =3.3V		135	180	
Line Regulation	ΔV_{LINE}	I _{OUT} =1mA, V _{IN} =V _{OUT} +1V to 5V			1	8	mV
Load Regulation (Note 5)	ΔV_{LOAD}	I _{OUT} =0A to 300mA			6	30	mV
Ripple Rejection (Note 6)	PSRR	$V_{IN}=V_{OUT}+1V_{DC}+0.2V_{P-P(AC)},$ $f_{RIPPLE}=1KHz,V_{OUT}\geq1.8V,$ $I_{OUT}=30mA$			75		dB
Output Noise Voltage (Note 6)	V _{NOISE}	C _{OUT} =1µF, I _{OI}	C _{OUT} =1µF, I _{OUT} =30mA BW=10Hz ~ 100KHz		65		μV_{RMS}
Current Limit	I _{LIMIT}			320			mA
Current Foldback	I _{CFB}	R _{Load} =1Ω			60		mA
Output Discharge Resistance	R _{DIS}	V _{EN} =0V			60		Ω
EN Pin Current	I _{EN}	V _{EN} =2.5V			0.3		uA
END: TI III	V _{EN(ON)}	Start-up		1.0			V
EN Pin Threshold	V _{EN(OFF)}	Shutdown			0.4	V	

Note 4: The dropout voltage is defined as V_{IN} - V_{OUT} , which is measured when V_{OUT} drops 2% of its normal value with the specified output current.

Note 5: Load regulation and dropout voltage are measured at a constant junction temperature by using a 40ms low duty cycle current pulse.

Note 6: Guarantee by design.

Application Information

The FP6187 is a low dropout linear regulator that could provide 300mA output current at dropout voltage about 150mV (3V output voltage).

1. Output and Input Capacitor

The FP6187 regulator is designed to be stable with a wide range of output capacitors. The ESR of the output capacitor affects stability. Larger value of the output capacitor decreases the peak deviations and improves transient response for larger current changes.

The capacitor types (aluminum, ceramic, and tantalum) have different characterizations such as temperature and voltage coefficients. All ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior across temperature and applications. Common dielectrics used are X5R, X7R and Y5V. It is recommended to use $1\mu F$ to $10\mu F$ X5R or X7R dielectric ceramic capacitors with $30m\Omega$ to $50m\Omega$ ESR range between device outputs and ground for stability. The FP6187 is designed to be stable with low ESR ceramic capacitors and higher values of capacitors and ESR could improve output stability. The ESR of output capacitor is very important because it generates a zero to provide phase lead for loop stability.

There are no requirements for the ESR on the input capacitor, but its voltage and temperature coefficient have to be considered for device application environment.

2. Protection Features

In order to prevent overloading condition from damaging the device, FP6187 has current limiting function designed to protect the device.

3. Thermal Consideration

The power handling capability of the device will be limited by allowable operation junction temperature (125°C). The power dissipated by the device will be estimated by $P_D \! = \! I_{OUT} \! \times \! (V_{IN} \! - \! V_{OUT}).$ The power dissipation should be lower than the maximum power dissipation listed in "Absolute Maximum Ratings" section.

4. Shutdown Operation

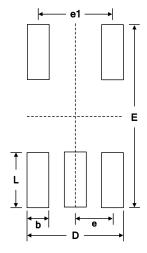
The FP6187 is shutdown by pulling the EN input low, and turned on by driving the EN high. If EN pin floating, the FP6187 will shut down because EN pin has built-in a pull low resistor (refer to Block Diagram).

5. Output Discharge Function

The FP6187 provides auto discharge function, an discharge MOSFET with $R_{\text{DS}(\text{ON})}$ of 60Ω typical is integrated between VOUT and GND pins, which can discharge the charge of the output capacitors quickly when turning off FP6187 with EN pin.

6. PCB Layout Recommendation

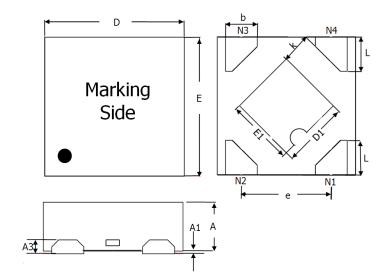
Place the input capacitors and output capacitors as close to the device as possible. The traces which connect to these capacitors should be as short and wide as possible to minimize parasitic inductance and resistance.


PCB Footprint

UTDFN-4L 1.0×1.0mm Package (Unit: mm)

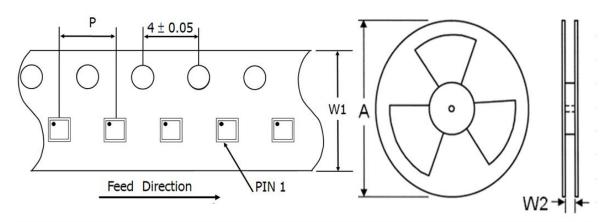
SYMBOLS UNIT	DIMENSION IN MILLIMETER		
D	1.3		
E	0.48		
F	0.48		
L	0.4		
k	0.22		
b	0.25		
е	0.625		

SOT-23-5 Package (Unit: mm)



SYMBOLS UNIT	DIMENSION IN MILLIMETER			
b	0.55			
D	2.45			
E	3.80			
L	1.27			
е	0.95			
e1	1.90			

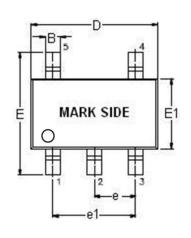
Outline Information

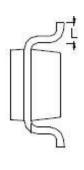

UTDFN- 4L 1.0mm x 1.0mm x 0.4mm (pitch 0.65 mm) Package (Unit: mm)

SYMBOLS	DIMENSION IN MILLIMETER				
UNIT	MIN	MAX			
Α	0.340	0.400			
A1	0.00	0.050			
А3	0.102	REF.			
D	0.950	1.050			
Е	0.950	1.050			
D1	0.380	0.580			
E1	0.380	0.580			
k	0.200	REF			
b	0.180	0.300			
е	0.650TYP				
L	0.200 0.300				
Note: Followed From JEDEC 664-1					

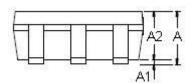
Note: Followed From JEDEC 664-1.

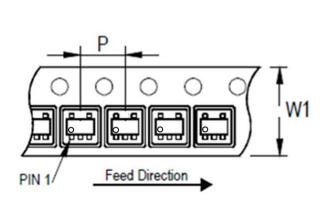
Carrier Dimensions

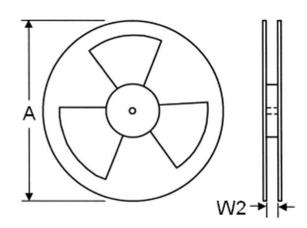

Tape Size	Pocket Pitch	Reel Size (A)		Reel Width	Empty Cavity	Units per Reel
(W1) mm	(P) mm	in mm		(W2) mm	Length mm	
8	4	7	180	9.5	400~1000	5000


FP6187-Preliminary 0.4-NOV-2018

Outline Information (Continued)


SOT-23-5 Package (Unit: mm)




SYMBOLS	DIMENSION IN MILLIMETER					
UNIT	MIN	MAX				
Α	0.90	1.45				
A1	0.00	0.15				
A2	0.90	1.30				
В	0.30	0.50				
D	2.80	3.00				
E	2.60	3.00				
E1	1.50	1.70				
е	0.90	1.00				
e1	1.80	2.00				
Ĺ	0.30	0.60				

Note: Followed From JEDEC MO-178-C.

Carrier Dimensions

Tape Size	Pocket Pitch	Reel Size (A)		Reel Width	Empty Cavity	Units per Reel
(W1) mm	(P) mm	in	mm	(W2) mm	Length mm	
8	4	7	180	8.4	300~1000	3,000

Life Support Policy

Fitipower's products are not authorized for use as critical components in life support devices or other medical systems.